

Form:	Form Number	EXC-01-02-02A
	Issue Number and Date	2/3/24/2022/2963
Course Syllabus		05/12/2022
	Number and Date of Revision or Modification	
	Deans Council Approval Decision Number	2/3/24/2023
	The Date of the Deans Council Approval Decision	23/01/2023
	Number of Pages	06

1.	Course Title	Properties of Materials					
2.	Course Number	0302775					
3.	Credit Hours (Theory, Practical)	(3, 0)					
5.	Contact Hours (Theory, Practical)	(48, 0)					
4.	Prerequisites/ Corequisites	Non					
5.	Program Title	Physics					
6.	Program Code	0302					
7.	School/ Center	Science					
8.	Department	Physics					
9.	Course Level	Graduate Level					
10.	Year of Study and Semester (s)	Second Year, First Semester					
11.	Other Department(s) Involved in	Non					
11.	Teaching the Course						
12.	Main Learning Language	English					
13.	Learning Types	\Box Face to face learning \blacksquare Blended \Box Fully online					
14.	Online Platforms(s)	■ Moodle Microsoft Teams					
15.	Issuing Date	24-12-2024					
16.	Revision Date	30-12-2024					

17. Course Coordinator:

Name:	Ahmad S Masadeh	Contact hours:
Office number:		Phone number: 22023
Email: ahr	nad.masadeh@ju.edu.jo	

18. Other Instructors:

Name:	
Office number:	
Phone number:	
Email:	
Contact hours:	

19. Course Description:

This course provides an understanding of the fundamental properties of materials, including transformations, symmetry elements, thermodynamics, mechanical and thermal properties, and electrical and magnetic phenomena. Students will explore key concepts such as dielectric properties, piezoelectricity, and thermoelectricity, as well as practical applications in material science.

20. Program Intended Learning Outcomes: (To be used in designing the matrix linking the intended learning outcomes of the course with the intended learning outcomes of the program)

1. SLO (1): to be able to identify, formulate, and solve broadly defined technical or scientific problems

by applying knowledge of mathematics and science and/or technical topics to areas relevant to the discipline.

2. SLO (2): to be able to formulate or design a scientific system, process, procedure or program to contribute achieving scientific desired needs.

3. SLO (3): to be able to develop and conduct experiments or test hypotheses, analyze and interpret data and use scientific judgment to draw conclusions.

4. SLO (4): to be able to communicate his/her scientific contributions effectively with a range of audiences.

5. SLO (5): to be able to recognize and demonstrate social, ethical and professional responsibilities and the impact of technical and/or scientific solutions in global economic, environmental, and societal contexts.

الجامعة الاردنية

6. SLO (6): to be able to function effectively independently and on teams for establishing goals, plan tasks, meet deadlines, and analyze risk and uncertainty.

21. Course Intended Learning Outcomes: (Upon completion of the course, the student will be able to achieve the following intended learning outcomes)

1. Explain the fundamental processes of material transformations and their influence on material properties.

2. Identify symmetry elements and point groups and analyze their roles in defining the properties of materials.

3. Evaluate thermodynamic and magnetoelectric effects in materials and their applications in modern technologies.

4. Analyze the mechanical behavior and thermal responses of materials, including thermal expansion, thermal conductivity, and related phenomena.

5. Describe the principles of dielectric, piezoelectric, and pyroelectric effects and their relevance in functional materials.

6. Interpret the relationship between magnetic phenomena, electrical resistivity, and the structure of materials.

7. Investigate diffusion and ionic conductivity in materials, with applications in energy and electronics.

8. Explain galvanomagnetic, thermomagnetic, and thermoelectric effects, and assess their implications in advanced materials and devices.

9. Apply theoretical and practical knowledge to solve real-world problems related to material selection, design, and performance.

10. Develop research skills in materials science and effectively communicate scientific findings in written and oral formats.

Course	The learning levels to be achieved											
ILOs	Remembering	Understanding	Applying	Analysing	evaluating	Creating						
1	\checkmark	\checkmark	✓									
2		\checkmark	✓									
3		\checkmark		✓								
4		\checkmark		✓								

5	✓		✓		
6	✓		✓		
7	✓		 ✓ 		
8	✓				✓
9	✓	 ✓ 			
10	✓			 ✓ 	

2^γ. The matrix linking the intended learning outcomes of the course with the intended learning outcomes of the program:

Program ILOs	ILO (1)	ILO (2)	ILO (3)	ILO (4)	ILO (5)
Course ILOs					
1	✓	✓			
2	✓	✓	✓		
3	✓	✓			
4	✓	✓		✓	
5	✓	✓			
6	✓	✓			
7	✓	✓	✓		
8	✓	✓		✓	
9	✓	✓			
10		✓			✓

2[°]. Topic Outline and Schedule:

Week	Lecture	Topic	ILO/s Linked to the Topic	Learning Types (Face to Face/ Blended/ Fully	Platform Used	Synchronous / Asynchronous Lecturing	Evaluation Methods	Learning Resources
	1.1	Transformations	Understa nd transform ations in materials	Face to Face	Classr oom/L MS	Synch ronou s	Short quizzes, participation	Lecture slides, textbooks, examples
1	1.2	Tensors	Explain tensor applicatio ns	Blen ded	Teams	Async hrono us	Problem- solving assignments	Online tutorials, recorded lecture videos
	1.3	Applications of Tensors	Apply tensor models to real- world cases	Fully Onli ne	LMS	Async hrono us	Discussion forum	Case studies, research papers, Heckmann diagrams
	2.1	Symmetry Elements	Identify symmetr y in materials	Face to Face	Classr oom	Synch ronou s	Visual models, diagrams quiz	3D models, symmetry analysis tools
	2.2	Point Groups	Classify materials based on symmetr y	Blen ded	Teams	Async hrono us	Peer discussions	Lecture notes, problem sets
2	2.3	Symmetry in Properties	Relate symmetr y to material propertie s using Heckman n diagrams	Fully Onli ne	LMS	Async hrono us	Assignment submission	Journals, simulation videos, Heckmann diagrams

								· · ·
		Thermodynamics	Describe	Face	Classr	Synch	In-class	Thermodynamics
	3.1		thermody	to	oom	ronou	problem-	textbooks, examples
			namics	Face		S	solving	
			principles					
		Thermodynamic	Explain	Blen	LMS	Async	Problem-	Lecture notes,
		Properties	thermal	ded		hrono	solving quiz	diagrams
	3.2		propertie			us		
2			s of					
3			materials		-			
		Magnetoelectric	Analyze	Fully	Teams	Synch	Research	Online papers,
		Effect	magneto	Onli		ronou	report	Heckmann diagrams
			electric	ne		S		
	3.3		coupling					
			with					
			Heckman					
			n diagrams					
		Pyroelectricity	Explain	Face	Classr	Synch	Case-based	Lecture slides,
		Fyroelectricity	pyroelect	to	oom	ronou	exam	application-based
	4.1		ric	Face	00111	s	exum	problems
			principles	Tucc		5		problems
			using					
			Heckman					
			n					
			diagrams					
		Dielectric	Analyze	Blen	LMS	Async	Short	Research articles,
4	4.0	Properties	dielectric	ded		hrono	quizzes,	videos
4	4.2		response			us	problem sets	
			S					
		Relation:	Compare	Fully	LMS	Async	Written	Simulation tools,
		Pyro/Dielectric	dielectric	Onli		hrono	assignment	lecture slides,
			&	ne		us		Heckmann diagrams
	4.3		pyroelect					
	т.5		ricity with					
			Heckman					
			n					
			diagrams					
		Elastic and	Differenti	Face	Classr	Synch	Stress-strain	Lab manual, material
		Plastic Behavior	ate	to	oom	ronou	lab	property data sheets
5	5.1		elastic/pl	Face		S		
			astic					
			response					
			S					

	1							
		Hardness and	Assess	Blen	LMS	Async	Data analysis	Case studies, online
		Toughness	hardness	ded		hrono	assignment	experiments
	5.2		and			us		
			toughnes					
			S					
		Advanced	Discuss	Fully	LMS	Async	Group	Review papers, video
		Mechanical	advanced	Onli		hrono	presentation	tutorials
	5.3	Behavior	mechanic	ne		us	S	
			al					
			behaviors					
		Thermal	Understa	Face	Classr	Synch	Conceptual	Textbooks,
		Expansion	nd	to	oom	ronou	quiz	simulations,
			thermal	Face		s		Heckmann diagrams
	6.1		expansio					
			n and its					
			implicatio					
			ns					
		Thermal	Explain	Blen	LMS	Async	Problem-	Video tutorials,
		Conductivity	heat	ded		hrono	solving	research papers
		,	transfer			us	exercises	
			in			45	exercises	
			different					
6	6.2		materials					
			using					
			Heckman					
			n diagrams					
		Thermal	Analyze	Fully	LMS	Asype	Case-based	Journals, material
		Properties of	thermal	Onli	LIVIS	Async hrono	problem-	property databases
							•	property uatabases
	()	Composites	expansio	ne		us	solving	
	6.3		n/conduc					
			tivity in					
			composit					
		Diamatelet	es Evelsie			C	Oral	lastrias (Pole)
		Piezoelectric	Explain	Face	Classr	Synch	Oral quiz	Lecture slides,
		Effect	fundame	to Face	oom	ronou		research papers
			ntals of	Face		S		
			piezoelec					
7	7.1		tric					
			materials					
			using					
			Heckman					
			n					
			diagrams					

		Applications of	Explore	Blen	LMS	Async	Assignment	Case studies, video
		Piezoelectric	applicatio	ded		hrono	submission	demonstrations
		Materials	ns in			us		
	7.2		sensors					
			and					
			devices					
		Piezoelectric	Analyze	Fully	LMS	Async	Project-	Design tools, research
		Device Design	the	Onli		hrono	based	papers, Heckmann
	7.3		design of	ne		us	evaluation	diagrams
	1.5		piezoelec					
			tric					
			devices					
		Basics of	Explain	Face	Classr	Synch	In-class	Magnetic materials
	8.1	Magnetism	types of	to	oom	ronou	discussion	textbooks
	0.1		magnetic	Face		S		
			behavior					
		Magnetic	Explore	Blen	LMS	Async	Quiz	Online examples,
		Materials	applicatio	ded		hrono		material catalogs
	8.2		ns of			us		
8			magnetic					
			materials		_			
		Advanced	Analyze	Fully	Teams	Synch	Report	Journals, videos,
		Magnetic	advanced	Onli		ronou	submission	Heckmann diagrams
	8.3	Phenomena	magnetic effects	ne		S		
	0.5							
			(e.g. <i>,</i> spintroni					
			cs)					
		Electrical	Discuss	Face	Classr	Synch	Problem-	Textbooks, online
		Resistivity	factors	to	oom	ronou	solving quiz	examples
	9.1	,	affecting	Face		S	0 1	
			resistivity					
		Temperature	Analyze	Blen	LMS	Async	Data	Research papers,
		Dependence of	resistivity	ded		hrono	interpretatio	graphs
		Resistivity	-			us	n assignment	
9	9.2		temperat					
9			ure					
			relations					
			hip					
		Conductors vs.	Compare	Fully	LMS	Async	Quiz	Simulation tools,
		Semiconductors	electrical	Onli		hrono		material data,
	9.3		propertie	ne		us		Heckmann diagrams
			s of					
			materials					

			using					
			Heckman n diagrams					
	10.1	Heat Capacity of Materials	Relate heat capacity to material propertie	Face to Face	Classr oom	Synch ronou s	Conceptual quiz	Lecture notes, research papers
1 0	10.2	Thermal Stresses	s Understa nd material failure due to thermal stress	Blen ded	LMS	Async hrono us	Case study assignment	Journals, problem sets, Heckmann diagrams
	10.3	Nanomaterials' Thermal Properties	Discuss unique thermal behaviors of nanomat erials	Fully Onli ne	Teams	Synch ronou s	Report submission	Research papers, recorded lectures
	11.1	Review of Mechanical Properties	Integrate knowledg e of mechanic al testing and propertie s	Face to Face	Classr oom	Synch ronou s	Group quiz	Summaries, videos
1 1	11.2	Advanced Dielectric Phenomena	Explore polarizati on mechanis ms	Blen ded	LMS	Async hrono us	Peer- reviewed reports	Journals, video explanations
	11.3	Coupling: Mechanical/Ther mal/Dielectric	Case studies on multifunc tional materials	Fully Onli ne	LMS	Async hrono us	Problem- solving exercises	Review papers, simulations, Heckmann diagrams

			T	1				
			using Heckman n diagrams					
1 2	12.1	Interrelation of Properties	Connect mechanic al, dielectric, and piezoelec tric propertie s	Face to Face	Classr oom	Synch ronou s	Group presentation s	Lecture slides, application-focused articles
	12.2	Emerging Applications	Analyze emerging trends and applicatio ns of material propertie s	Blen ded	LMS	Async hrono us	Individual reports	Cutting-edge research articles
	12.3	Summary and Future Trends	Summariz e and discuss future directions	Fully Onli ne	Teams	Synch ronou s	Course evaluation	Journals, recorded lectures, Heckmann diagrams
1 3	13.1	Transformations	Understa nd transform ations in materials	Face to Face	Classr oom/L MS	Synch ronou s	Short quizzes, participation	Lecture slides, textbooks, examples
	13.2	Tensors	Explain tensor applicatio ns	Blen ded	Teams	Async hrono us	Problem- solving assignments	Online tutorials, recorded lecture videos
	13.3	Applications of Tensors	Apply tensor models to real- world cases	Fully Onli ne	LMS	Async hrono us	Discussion forum	Case studies, research papers, Heckmann diagrams
1 4	14.1	Project (paper term)						

	14.2	Project (paper term)
	14.3	Project (paper term)
1 5	15.1	Project (paper term)
	15.2	Project (paper term)
	15.3	Project (paper term)

24. Evaluation Methods:

Opportunities to demonstrate achievement of the ILOs are provided through the following assessment methods and requirements:

Evaluation Activity	Mar k	Topic(s)	ILO/s Linked to the Evaluation activity	Period (Week)	Platfor m
Midterm Exam	30	transformations, symmetry elements, mechanical and thermal properties	1,2	Week 7	
Assignments	30	All Covered topics	1,3	Throughout	
Final	40	All Covered topics	1, 2, 3	Week 14	

2°. Course Requirements:

White board and overhead projector.

27. Course Policies:

A- Attendance policies:

Regular attendance according to the rules of the host institution

B- Absences from exams and handing in assignments on time:

Based on the rules of the host institution.

C- Health and safety procedures:

Based on the rules of the host institution

D- Honesty policy regarding cheating, plagiarism, misbehavior:

According the rules of the host institution

E- Grading policy:

Grading the exam based on a key solution.

F- Available university services that support achievement in the course:

e-learning.

2^v. References:

A- Required book(s), assigned reading and audio-visuals:

1) Properties of Materials: Anisotropy, Symmetry, Structure" by Robert E. Newnham

B- Recommended books, materials, and media:

1) Structure of Materials: An Introduction to Crystallography, Diffraction, and Symmetry , by Marc De Graef and Michael E. McHenry

2^A. Additional information:

Name of the Instructor or the Course Coordinator: Ahmad S Masadeh	Signature: Ahmad Masadeh	Date: 30-12-2024
Name of the Head of Quality Assurance Committee/ Department	Signature:	Date:
Name of the Head of Department	Signature:	Date:
Name of the Head of Quality Assurance Committee/ School or Center	Signature:	Date:

الجامعة الاردنية

Name of the Dean or the Director	Signature:	Date: